Regina Summer Math Review

For students who will be taking

Pre-Calculus

Completed review packet due the first day of classes

. •

Summer Review for Pre-Calculus

This is a list of topics that you should know when you take Pre-Calculus at Regina. We have created this packet to help students better prepare for this challenging course. The better you know these concepts, the easier the transition to Pre-Calculus will be.

- A) The things you want to know well when you come in the door are first and are **boldfaced**.
- B) Things you should have good familiarity with come second and are underlined.
- C) The topics in parenthesis are things that you should have been introduced to and we may cover further in Pre-Calculus.

THE TOPICS

Manipulative Algebra: You should know all the following techniques:

- 1. Good use of the distributive property, in exponential, radical, and linear situations
- 2. Gathering like terms, simplifying correctly, order of operations
- 3. How to simplify a binomial and how NOT to
- 4. How to simplify a radical and how NOT to
- 5. How to work with imaginary and radical answers
- 6. Basic factoring and the zero product property, including the difference of 2 squares
- 7. Quadratic formula
- 8. Exponents: all properties, including fractional exponents and their link to radicals
- 9. How to solve inequalities and compound inequalities (AND/OR)
- 10. Fractions: how to +-*/, use LCD's, simplify (cancel), and solve fractional equations
- 11. Polynomial long division
- 12. (How to solve absolute value inequalities)

Functions:

- 13. Know the formal definition of a function
- 14. Use function notation to find a function value
- 15. Understand the implications of function notation (ex: what does f(2) = 3 mean?)
- 16. Graphs of power, polynomial, and rational functions (this is sometimes bypassed in HAA)
- 17. Basic combined functions (+-*/), composite functions, and inverse functions

Linear Functions:

- 18. Point-slope form of a line
- 19. Slope-intercept form of a line
- 20. How to find slope and what it means
- 21. How to find an equation from information about a graph
- 22. How to graph a given equation, even if it's not in the right form

- 23. How to find an intersection using graphing, substitution, and adding equations
- 24. How to graph a linear inequality and the solutions for a system of linear inequalities
- 25. Parallel and perpendicular lines

Quadratic Functions:

- 26. Be able to graph quadratics from the following forms: vertex and root
- 27. Understand the effects of a and c (standard form)
- 28. Understand the effects of a, h, and k (vertex form)
- 29. Understand the effects of a and the roots (root form)
- 30. Find the x-intercepts of a parabola in any form, using appropriate algebra
- 31. Be able to find an equation given sufficient graphical information
- 32. Complete the square to graph a parabola

Calculator Use:

- 33. Be proficient with the use of ANS, ENTRY, INS, DEL
- 34. Be able to graph in function mode
- 35. Understand the implications of the WINDOW (including distortion), and be proficient in altering the window to get a good graph
- 36. Use Trace and basic Zooms
- 37. Use the STO button to store variables in the calculator
- 38. Use of linear regression to find the line of best fit

Exponential and Logarithmic Functions:

- 39. Know the basic form of exponential functions and the role each variable has in basic situations
- 40. Solve exponential equations using logarithms
- 41. Be able to sketch exponential graphs
- 42. From an exponential graph, sketch basic log graphs
- 43. Know all the logarithmic properties

Odds and Ends:

- 44. Intro to the number e through "compounded continuously"
- 45. Variation: Inverse and direct with various powers of the independent variables
- 46. (Matrices: +-*, using them to solve linear equations through inverses)
- 47. (Probability: Basic concept, compound events (both and and or), and conditional probability)
- (Combinatorics: Combinations, permutations, the binomial theorem, and Pascal's triangle.)

	LogarithmsProperties of Logs: $y = \log_b x \Leftrightarrow x = b^y$ Properties of Logs: $\log_b b = 1$ $y = \log_b x \Leftrightarrow x = b^y$ $\log_b b = 1$ $\log_b 1 = 0$ ent $\ln x = \log_e x$ natural \log $\log_b (m \cdot n) = \log_b m + \log_b n$ $e = 2.71828$ $\log_b (m \cdot n) = \log_b m + \log_b n$ $e = 2.71828$ $\log_b (m \cdot n) = \log_b m - \log_b n$ $e = 2.71828$ $\log_b (m \cdot n) = \log_b m - \log_b n$ $e = 2.71828$ $\log_b (m \cdot n) = \log_b m - \log_b n$ $\log x = \log_{10} x$ common $\log_b \left(\frac{m}{n} \right) = \log_b m - \log_b n$ $\log_b a = \frac{\log a}{\log b}$ $\log_b (m') = r \log_b n$ $\log_b a = \frac{\log a}{\log b}$ Domain: $\log_b x \text{ is } x > 0$	Quadratic Equations: $ax^2 + bx + c = 0$ (set = 0.) Solve by factoring, completing the square, quadratic formula. $b^2 - 4ac > 0$ two real unequal roots $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $b^2 - 4ac < 0$ two complex roots Square root property: If $x^2 = m$, then $x = \pm \sqrt{m}$ Completing the square: $x^2 - 2x - 5 = 0$ 1. If other than one, divide by coefficient of x^2 2. Move constant term to other side $x^2 - 2x - 5 = 0$ 1. If other than one, divide by coefficient of x^2 3. Take half of coefficient of x , square it, add to both sides $x^2 - 2x + [] = 5 + []$ 4. Factor perfect square on left side. $(x - 1)^2 = 6$ 5. Use square root property to solve and get two answers. $x = 1\pm \sqrt{6}$ Sum of roots : $r_1 + r_2 = -\frac{b}{a}$ Product of roots : $r_1 \cdot r_2 = \frac{c}{a}$ Inequalities: $x^2 + x - 12 \le 0$ Change to $=$, factor, locate critical points on number line, check each section. (x + 4)(x - 3) = 0 ANSWER: $-4 \le x \le 3$ or $[-4, 3]$ (in interval notation)
Algebra 2 – Things to Remember!	Complex Numbers: $\sqrt{-1} = i$ $\sqrt{-a} = i\sqrt{a}; a \ge 0$ $i^2 = -1$ $i^{14} = i^2 = -1$ divide exponent by 4, use remainder, solve. (a + bi) conjugate $(a - bi)(a + bi)(a - bi) = a^2 + b^2[a + bi] = \sqrt{a^2 + b^2} absolute value=magnitude$	Exponentials $e^{x} = \exp(x)$ $b^{x} = b^{y} \rightarrow x = y$ $(b > 0 \text{ and } b \neq 1)$ If the bases are the same, set the exponents equal and solve. Solving exponential equations: 1. Isolate exponential expression. 2. Take log or <i>ln</i> of both sides, 3. Solve for the variable. $\ln(x)$ and e^{x} are inverse functions $\ln e^{x} = x$ $e^{\ln x} = x$ $\ln e^{x} = e^{\ln^{3} z} = 9$ Absolute Value: $ a > 0$ $ a = \begin{cases} a; & a \ge 0\\ -a; & a < 0\\ m = b \implies m = -b \text{ or } m = b\\ m < b \implies m > b \text{ or } m < -b \end{cases}$
	Exponents: $x^{0} = 1$ $x^{-m} = \frac{1}{x^{m}}$ $x^{m} \bullet x^{n} = x^{m+n}$ $(x^{n})^{m} = x^{n-m}$ $(x^{m})^{n} = x^{n-m}$ $(xy)^{n} = x^{n} \bullet y^{n}$	Factoring: Look to see if there is a GCF (greatest common factor) first. $ab + ac = a(b + c)$ $x^2 - a^2 = (x - a)(x + a)$ $(x + a)^2 = x^2 + 2ax + a^2$ $(x - a)^2 = x^2 - 2ax + a^2$ Factor by Grouping: $x^3 + 2x^3 - 3x - 6$ group $(x^3 + 2x^2) - (3x + 6)$ group (x^3 + 2x^2) - (3x + 6)

All Rights Reserved: http://regentsprep.org

. •

.

.

Radicals: Remember to use fractional exponents.	Working with Rationals (Fractions):	
$a\sqrt{x} = x^{\frac{1}{\alpha}} \qquad \qquad x^{\frac{1}{\alpha}} = \sqrt[\alpha]{x^{\frac{1}{\alpha}}} = (\sqrt[\alpha]{x})^{\frac{1}{\alpha}}$	Simplify: remember to look for a factoring of _1.	Cet rid of the denominators by mult. all terms by
 .	3x-1 -1(-3x+1)	
$\sqrt[n]{a}^n = a$ $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$	$\left \frac{1}{1-3x}\right = \frac{1}{1-3x} = -1$	$\frac{2x^2-9x-5}{2x+1} = \frac{x-5}{x-5}$
Simplify: look for perfect powers.	Add: Get the common denominator.	multiply all by $2x^2 - 9x - 5$ and get
$\int \sqrt{12} \frac{1}{\sqrt{12}} \frac{1}{\sqrt{12}} \frac{1}{\sqrt{12}} \frac{1}{\sqrt{16}} \frac{1}{1$	Factor first if possible:	22 - 3(x - 5) = 2(2x + 1)
	Multiply and Divide: Factor First	22 - 3x + 15 = 4x + 2
$\sqrt{1/2x'y'z'} = \sqrt{8.9x'y'y'z'} = 2x'y'z\sqrt{9y'}$	Rational Inequalities	37 - 3x = 4x + 2
Use conjugates to rationalize the nonlineators. $5 - \sqrt{3} = 10 - 5\sqrt{3}$	$\frac{x^2 - 2x - 15}{2} \ge 0$ The critical values	35 = 7x
$\frac{5}{2+\sqrt{3}} = \frac{5}{2-\sqrt{3}} = \frac{5}{4-2\sqrt{3}+2\sqrt{3}-\sqrt{9}} = 10-5\sqrt{3}$	from factoring the numerator are -3, 5.	5 = x Great! But the only problem is that
Equations: isolate the radical; square both sides to eliminate radical; combine; solve.	The denominator is zero at $x = 2$. Place on number line, and test section:	
$2x - 5\sqrt{x} - 3 = 0 \to (2x - 3)^2 = (5\sqrt{x})^2$		Motto: Always CHECK ANSWERS.
$4x^{-1}Lx + 9 = 20x \rightarrow solve: x = 3; x = 1/4$ CHECK ANSWERS Answer only $x = 9$		Equations of Circles: $x^2 + y^2 = r^2$ center origin
CLEACE AND THAN. AND WE WILL WILL A TO	ينيه	$(x-h)^{2} + (y-k)^{2} = r^{2}$ center at (h,k)
Functions: A function is a set of ordered pairs in which	$S_n = \frac{n(a_1 + a_n)}{x^2} \qquad x^2 + x^2$	$x^{2} + y^{2} + Cx + Dy + E = 0$ general form
		Complex Fractions:
Vertical Line Test: is this graph a function?		Remember that the fraction bar means divide:
Domain: x-values used; Range: y-values used	$S = \frac{a_i(1-r^n)}{S}$	Method I: Get common denominator top and bottom
Onto: all elements in B used.		$\frac{4}{2}$ $\frac{2-4x}{\sqrt{2}}$ $2-4x$ $4x-2$ $2-4x$ x^{2}
Composition: $(f \circ g)(x) = f(g(x))$	Idecursive: Example: $\frac{1}{2}$	$\frac{x}{4} = \frac{x}{2} = \frac{x}{4x-2} = \frac{x^2}{x^2} + \frac{x^2}{x^2} = \frac{x}{x^2} + \frac{x^2}{4x-2} = -1$
Inverse functions $f \& g: f(g(x)) = g(f(x)) = x$		K ² X ²
Horizontal line test: will inverse be a function?	Meth all.	Method 2: Mult. all terms by common denominator for all.
Transformations:	Binomial Theorem: 2	$\frac{4}{x^2 - x^2 - x^2}$
-f(x) over x-axis; $f(-x)$ over y-axis $f(x+a)$ horizontal shift; $f(x)+a$ vertical shift	$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ $\frac{x^2}{4}$	$\frac{x^2}{4-2} = \frac{x^2}{x^2 \cdot 4} = \frac{x^2}{2} = \frac{x^2}{4x-2} = \frac{2-4x}{4x-2} = -1$
f(ax) stretch horizontal; $af(x)$ stretch vertical	x	r x x

All Rights Reserved: http://regentsprep.org

.

·

.

the outside.	•	_	
		$=a^2+b^2$	$\sin \angle A = \frac{a}{-}$; $\cos \angle A = \frac{a}{-}$; $\tan \angle A = \frac{a}{-}$
	Triples: 3, 4, 5		h h a
Circumterence: $C = 2\pi r = \pi d$		An	Angle of elevation: from horizontal line of sight up.
	7, 24, 25	An	Angle of depression: from horizontal line of sight down.
Area:	Volume and Surface Area:	Data:	
	$V_{\rm rectangular solid} = l \cdot w \cdot h$	5 Statistical Surr	5 Statistical Summary: minimum, maximum, median, 1 ^{at} quartile,
triangle 2	$SA_{\text{recentional ar solid}} = 2lh + 2hw + 2lw$: : : :	3. quartile
$s^2\sqrt{3}$	$V_{\pm} = \pi r^2 h$	Dercentiles divide	Quartiles divide data into 4 equal parts. Dercentiles divide data into 100 equal parts
^{cr} equilateral triangle 4	$cylinder \qquad cylinder $		number of scores below x
$A_{\rm rectangle} = bh$	DH closed cylinder — ZMIN + ZMI	Percentile rank c	1 score $x = \frac{1}{n}$
. S ²	Error in Measurement:	<u> </u>	the number of scores.
	Relative error = <u>measure-actual</u>	Mean = average.	
Parallelogram	actual	Mode = most of	Mode = most often (may be more than one answer).
$A. = bh = \frac{d_1 \cdot d_2}{d_1 \cdot d_2}$	% of Error = Relative • 100%	Median = middle.	, Li
.L	Permutations:	Outliers = value	Outliers = values that are far away from the rest of the data.
$A = \frac{1}{h(h+h)}$	Arrangement in specific order.	Median best des	Median best describes data if outliers exist.
		Range = differer	Range = difference between the maximum and minimum values.
$A_{\rm circle} = \pi r^2$	${}_{n}F_{r} = \frac{1}{(n-r)!}$		
$\frac{n}{2}$	Probability: $P(A^{*}) = 1 - P(A)$ complement	lement	Box and Whisker Plot: 1 st and 3 rd quartiles are at the
Asector of tircle $-\frac{360}{360}$ /1/	$P(A \text{ and } B) = P(A) \cdot P(B) \text{ independent}$		ends of the box, median is a vertical line in the box, and
	$P(A \text{ and } B) = P(A) \cdot P(B/A)$ dependent	نټ	the max/min are at the ends of the whiskers.
$A_{\text{semicircle}} = \frac{-\pi r}{2}$	P(A or B) = P(A) + P(B) mutually exclusive	clusive	Helpful in interpreting the distribution of data.
	P(A or B) = P(A) + P(B) - P(A and B) not exclusive	3) not exclusive	
$A_{\text{quarter circle}} = \frac{1}{4}\pi r^2$	P(B A) = P(A and B)/P(A) conditional probability	al probability	
	P(B/A) means probability of B given A has occurred.	A has occurred.	
Literal equations:	Sets:		Exponential Growth and Decay:
a = b + cd, solve for c .	$A \bigcup B$ Union - all elements in both sets.	ts.	Decay: $y = ab^x$ where $a > 0$ and $0 < b < 1$
a-b=cd	$A \cap B$ Intersection - elements where sets overlap.	sets overlap.	
$\frac{a-D}{d} = C$	A' Complement - elements not in the set.	set.	Growth: $y = ab^x$ where $a > 0$ and $b > 1$
	$\{\ \}$ or \emptyset means null set.		

Copyright © Regents Exam Prep Center http://regentsprep.org

.

Sample Problems

This list of problems corresponds roughly to the concept list, though not in "point-by-point" order. They are intended to give you a rough idea of what is meant by the concepts above. This list should be completed, or solved as much as possible with specific questions about how to continue, when you come in for class in August.

Note that knowing these problems only demonstrate that you can perform a variety of skills; it doesn't show whether you really understand what you're doing. Thus, one should always ask not just, "How do I do this problem?" but also, "Why does what I am doing make sense?"

Still, this list is a good place to start. Answers will be forthcoming...we're hoping to have this list with answers posted on the website by the beginning of August. Look for it at seaprep.org!

REGARDING CALCULATORS: Most of these problems are intended to be done without a calculator. Exercise your best judgment on when to use one and when not. Remember, the whole point is to see what you know, so getting an answer by sneaking around the problem isn't in your interest.

Manipulative Algebra

Simplify all of the following:

- 1) $\left(\sqrt{x} + \sqrt{y}\right)^2$ 2) $\sqrt{x^2 + y^2} + \sqrt{x^2 y^4}$
- 3) $(3x^2)^2 3x^2 (x+3)^2$ 4) $\frac{1}{x-1} - \frac{3}{x}$
- 5) $\frac{x^2 3x 4}{x^2 4x + 4} \div \frac{x^2 5x 6}{x^2 4}$
- 6) $3(2-x^2)-(4-x)x^2-x^2$ 7) $\sqrt[3]{x^4}\sqrt[5]{x^4}$
- 8) $\frac{a-3}{a^2-2a} \frac{a-4}{a^2-4}$ 9) $\frac{6n-2}{6n} \div \frac{3n-1}{27}$

Solve all of the following:

. .

10) $3(x-4)-2(3-x) = x+2$	11) $x^2 + 4x = 2x - 4$
12) $2x^2 - 3(x-4) = x-6$	13) $(x-1)(x-2)(x-3)(x-4)(x-100) = 0$
14) $(x+1)^{4} = 27$	15) $(x-2)^{\frac{3}{2}} = 10$ 16) $\sqrt[3]{2x-1} = 2$
17) $\frac{3+2x}{3-2x} = \frac{3}{4}$	18) $\frac{3}{b^2 - b} - \frac{2}{b - 1} = 1$

Evaluate each of the following:

19) $4^{\frac{1}{2}}$ 20) 3^{-2} 21) $(-27)^{\frac{1}{2}}$ 22) 10°

Graph the solutions to each of the following:

23) 3(2-x) < 4 and 2(x-1) < 10 24) $\sqrt[3]{27x^3} > 4$ or $x > 2^{-1}$

Functions

25) What is the formal definition of a function?

26) Does the graph of a circle represent a function?

- 27) If $f(x) = x^2 2x + 2$, (a) find f(-2), (b) Solve f(x) = 1.
- 28) If f(2)=3, what point do you know is on the graph of f?
- 29) If f(x) = 3x + 7 and g(x) = 2x 1, then find a) f(g(3)) b) g(f(3)) c) f(g(x))d) $f^{-1}(4)$ e) $g^{-1}(x)$ f) (f+g)(5)

Linear Functions

- 30) If a line goes through (7, 4) and has a slope of -2, find the equation of the line in (a) point-slope form, and (b) in slope-intercept form.
- 31) If a company's sales are growing linearly, and the sales were \$30000 in 1990 and \$48400 in 1992,(a) find the slope of the linear function and (b) explain, using units, what the slope means.
- 32) Sketch a graph of 3x + 4y = 7, and find the x- and y-intercepts.
- 33) Find the intersection of y = 2x+3 and y = -x-7.

. .

· · ·

·

*

- 34) Find the intersection of 2x+3y=4 and 4x-6y=5.
- 35) Graph the solutions to y > 3x 7.

36) Graph the solutions to the system
$$\begin{cases} y \ge 2x+3\\ 2x-5y < 20 \end{cases}$$

37) Find the equation of the line perpendicular to $y = \frac{2}{3}x + 7$ that goes through the point (1, 2).

Quadratic Functions and Relations

- 38) What do you know about each of the following graphs?
 - a) $y = -3x^2 + 4x 2$ b) $y = 0.04(x-3)^2 + 4$ c) y = (x-3)(x-5)
- 39) Find the x-intercepts of the parabola given by $f(x) = x^2 7x + 1$.
- 40) Find the equation of the parabola with a vertex at (-3, -4) and that has an x-intercept at 10.
- 41) Sketch a graph of $x^2 + (y-3)^2 = 16$.
- 42) Find the equation of the circle that has a center of (2, 7) and that passes through (5, 3).

Exponential Functions and Logarithms

(Note: this is a key item from 2nd year algebra, though it isn't seen at all in geometry. This is a topic that all students should refresh in their memory.)

- 43) If a population starts at 1000 and is growing at a 4% annual rate, how large will it be after 30 months?
- 44) When will the population described above reach 2000?
- 45) Sketch a graph of $y = 2^x$, $y = 100(1.15)^x$, and $y = \left(\frac{1}{2}\right)^x$.
- 46) Sketch the graph of $y = \log_2 x$, given the graph of $y = 2^x$ as a guide.

-.

- 47) Evaluate: $\log_3 9$, $\log_4 8$, $\log_{17} 1$, and $\log_2 \frac{1}{4}$.
- 48) Simplify: $\log 3 + \log 12 2\log 2$
- 49) Solve the equation $50 = 17(1.1)^x$. (If you REALLY got these, write a story problem where you have to solve that equation to find the answer!)
- 50) What can you say about the number e?
- 51) What is the value of \$5000 invested at 8% interest for 5 years if it is compounded a) every month? b) every day? c) continuously?